
The Seventh Roots of Unity 
By James Blowers 

 
To evaluate the seventh roots of unity in radicals, notice that they satisfy the equation x7- 
1 = 0. The number 1 is a root of this equation, since 17 = 1. Therefore, x - 1 is a factor of 
x7- 1. If you perform the division, the result is: 
 
x6 + x5 + x4 + x3 + x2+ x + 1 = 0   
 
One way of solving this equation, and indeed of x7- 1 = 0, is to use the cis notation. Note 
that the seven roots are given by e2πni/7 , which can also be expressed as cos (2πn/7)+i 
sin(2πn/7), or to abbreviate, cis (2πn/7).  This is not really solving by radicals, as it uses 
trigonometric functions. But it does show that if x is a root of the equation, then so is 1/x, 
for the inverse of cis (2πn/7)  is cis ((2π(7−n)/7).  Another way to see this is that the 
equation polynomial is a palindrome. Replacing x by 1/x in the equation causes the 
coefficients to go in reverse order, meaning you get the same polynomial again.  Note 
also that if r is a root of the equation, that  
 
r + 1/r 
= cis (2πn/7) + cis ((2π(−n)/7)  
= cos (2πn/7) + I sin (2πn/7) + cos (2πn/7) - I sin (2πn/7)  
= 2 cos (2πn/7) 
 
which is double the real part of one of the seventh roots of unity. So the idea is to 
compute r + 1/r, and then get the imaginary part as 21 r− .  
 
If r and 1/r are roots of a quadratic polynomial, then that polynomial is x2 - (r+1/r)x + 1 = 
0, since the product of the two roots is 1.  The roots exist in three pairs, each inverse (and 
also complex conjugate) of each other. This suggests expressing the polynomial as: 
 
(x2 + Ax + 1) (x2 + Bx + 1) (x2 + Cx + 1) = 0 
 
Now expand this polynomial, and then compare to the equation above. This results in a 
system of equations. 
 
A + B + C = 1 
AB + AC + BC + 3= 1 
ABC + 2(A+B+C) = 1 
 
From these equations, we conclude that  
 
A + B + C = 1 
AB + AC + BC = -2 
ABC = -1 
 
This in turn means that A, B, and C satisfy the equation: 



 
y3 - y2 - 2y + 1 = 0 
 
This cubic can be solved using the cubic formula. It is going to give real roots, but the 
formula will express them with complex numbers. That's how it happens. We cannot 
express them in real radicals.  
 
To solve the cubic, first replace y with x + 1/3.  This gets rid of the second term, resulting 
in the equation: 
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The formula is, where p = -7/3 and q = 7/27: 
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This gives x. To get y, remember we made the substitution, and note that 54/33 = 2: 
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This is only one of the roots of the cubic in y, and I have used an ambiguous notation - 
the cube root. There are three possible cubic roots. What do I mean? In this expression I 
mean take the polar coordinates of what's under the cube root sign, and take one-third of 
the angle. If I choose the second radical to be the complex conjugate of the first, the 
resulting y is a real number, namely 2 cos (2π/7).  One-half of this number is the real part 
of one of the seventh roots of unity. To express the other two roots, I would have to insert 
factors of ω and ω2, and ω2 and ω, to the cube roots above, where ω is one of the 
complex cube roots of unity. 
 
To get the imaginary part of the seventh roots of unity, use the fact that the modulus, or 
absolute value, of the roots is 1. This means that the imaginary part z is: 
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So an expression for the 7th roots of unity is: 
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The real part of this root is a solution of a cubic equation, but I don't believe that the 
imaginary part is - it is the root of a sixth degree equation. A similar phenomenon exists 
for the fifth roots of unity.  
 
To get all six roots, one takes all six possible combinations of the sign before the I in the 
second line and the ωs and ω2s as coefficients of the cube roots. Note that once you make 
a choice of ωs and ω2s in the real part, one must keep the same choice in the imaginary 
part. 
 
To see what happened when I evaluated these roots, note that I solved a cubic equation. 
Adding on to the rational numbers (Q) the roots of this equation results in a degree 3 
extension (not degree 6, since when one adds one root, the other roots also appear in the 
field). This is the splitting field of y3 - y2 - 2y + 1 = 0 over Q. This got me the real part of 
the complex roots. I then added i to this field, creating a degree 6 extension. This 
extension, obtained by adding the root of y3 - y2 - 2y + 1 = 0 and i to Q, is the splitting 
field F of x7- 1 = 0 over Q. The Galois group of all automorphisms of F over Q that fixes 
Q is Z/6Z, the integers mod 6. In terms of the Galois group, I went from I to Z/3Z to 
Z/6Z.  
 
What I wonder is, what if you go up through Z/2Z instead? In that case, you have to 
come up with some quadratic equation, and then express the polynomial as a cubic in that 
field. What I do know is that the number that you have to add to Q to get this quadratic 
extension is r + r2 + r4, where the exponents are the quadratic residues of 7. This number 

is 
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